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Abstract: Our ability to investigate the brain is limited by available technologies that can record
biological processes in vivo with suitable spatiotemporal resolution. Advances in optogenetics
now enable optical recording and perturbation of central physiological processes within the intact
brains of model organisms. By monitoring key signaling molecules noninvasively, we can better
appreciate how information is processed and integrated within intact circuits. In this review, we
describe recent efforts engineering genetically-encoded fluorescence indicators to monitor neuronal
activity. We summarize recent advances of sensors for calcium, potassium, voltage, and select
neurotransmitters, focusing on their molecular design, properties, and current limitations. We also
highlight impressive applications of these sensors in neuroscience research. We adopt the view that
advances in sensor engineering will yield enduring insights on systems neuroscience. Neuroscientists
are eager to adopt suitable tools for imaging neural activity in vivo, making this a golden age for
engineering optogenetic indicators.
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1. Introduction

A central and astonishing feature of the nervous system is the capacity for learning and
remembering, which are inherently dynamic processes. Advances in genetically-encoded sensors
enable the real-time observation of key signaling molecules in a cell-type and circuit-specific manner
within intact brain tissue and in vivo. Genetic strategies allow targeted expression of optogenetic
tools [1,2] to a specific cell type (using specific promoters [3] or in transgenic animals expressing
DNA recombinases in a specific cell type [4]) or an anatomically distinct circuit (using intersectional
or retrograde viral labeling strategies [5,6]). Additionally, genetically-encoded probes are the only
technique available to observe precisely the same cells longitudinally, permitting long-term monitoring
of specific cellular processes, up to months [7,8]. Judiciously selecting suitable spectral properties
of optical sensors potentially enables the visualization of the activity and interactions of distinct cell
types [9]. Thus, genetically-encoded indicators are an indispensable tool for visualizing neuronal
activity in a cell type and circuit-specific manner while minimizing disturbance to the complex cellular
milieu of the brain. Advances in these sensors allow noninvasive and longitudinal monitoring of key
neural processes, which is essential for understanding how information is transmitted and processed.

In this review, we describe advances from the past three years in the engineering and application
of genetically-encoded fluorescence indicators of neuronal activity. We focus on indicators for
calcium, voltage, and neurotransmitters that show acceptable performance for in vivo imaging.
We also provide an overview of new sensors—which potentially enable fundamentally new
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kinds of measurements—and their molecular design, biochemical and spectral characteristics, and
current limitations.

2. Calcium Indicators

Calcium is a crucial mediator of neural activity and activity-dependent synaptic plasticity [10,11].
While most neurons at rest contain cytoplasmic calcium concentrations of 50–100 nM, electrical
activity can swiftly and dramatically increase calcium concentrations [12] for tens of milliseconds
to several seconds [13,14]. Therefore, calcium is an excellent proxy for neuronal activity, and,
accordingly, genetically-encoded calcium indicators (GECIs) are the most popular and widely used
optical sensors of neuronal activity in neuroscience [8,11,15,16]. Since the development of the first
proof of principle GECIs almost two decades ago [17–20], herculean efforts in protein engineering
resulted in several excellent calcium sensors [21,22] providing researchers a selection of tools for diverse
applications, including imaging large neural population dynamics [23,24], dendritic processing [25],
as well as synaptic [26,27] and presynaptic [28] function. Here, we will discuss the major progress
in engineering GECIs from the past few years and briefly describe some of their most distinctive
applications. Prior work on the development and application of GECIs has been reviewed in earlier
publications [8,11,15,16].

Since 2016, two types of molecular designs have prevailed among improved as well as newly
developed GECIs (Figure 1a,b). The GECI families based on the GCaMP-like design are the most
numerous and widely used GECIs for in vivo imaging [22] (Table 1). Calcium sensors with green
fluorescence exhibit the best performance, especially the GCaMP6 variants [26] and, therefore, are the
primary choice for most applications. Intensive use of the GCaMP variants in vivo resulted in a wealth
of evidence for their interference with normal calcium dynamics and gene expression in mammalian
systems that must be taken into account when interpreting calcium imaging data [29–31]. Typically, the
side effects are due to the interaction of the calcium binding domain, which has a mammalian origin,
with endogenous proteins, as well as the buffering of cytoplasmic calcium, artifacts more prominent
during prolonged sensor expression at high levels [26,32]. To overcome these side effects, several
different modifications of calcium binding domains have been attempted. For example, Yang et al.
engineered GCaMP-X by incorporating an extra apoCaM-binding motif into the GCaMP variants [31].
This modification did not significantly affect overall sensor performance but reduced interactions
with L-type calcium channels, thus effectively protecting CaV1-dependent excitation-transcription
coupling from sensor-induced perturbations [31]. An alternative strategy to minimize GCaMP-induced
side effects involve exploiting calcium binding domains cloned from fungi and yeasts that share
conserved amino acid identity with their metazoan counterparts used in GCaMPs [33]. For example,
the calmodulin and M13-like peptide from Aspergillus fungi swapped with the calcium-binding
domain in GCaMP6s prevented interaction with endogenous proteins at low calcium concentrations
in cultured mammalian cells [33]. In addition, fungal GCaMP, or FGCaMP, exhibits ratiometric by
excitation fluorescence response to calcium ions, with the highest brightness and dynamic range
combination among other ratiometric GECIs such as GEX-GECO [34], Pericam [19], and Y-GECO [35].
Furthermore, FGCaMP can report neuronal activity with single cell resolution in zebrafish larvae
under light-sheet microscopy. Another way to improve the performance of GECIs is structure-guided
mutagenesis of the GFP-CaM interface and the CaM-M13 peptide interactions [36]. For example,
further mutagenesis of the calcium binding domain in the GCaMP6 variants resulted in the next
generation green sensors, the jGCaMP7 series, characterized by improved sensitivity to one action
potential and higher signal-to-noise ratio due to enhanced brightness [37]. However, the jGCaMP7
variants are still less validated in vivo compared to the extremely popular GCaMP6 indicators.

Very recently, Barykina et al. suggested an alternative design of GECIs, which implicates the
insertion of a calcium-binding domain into a fluorescent protein (Figure 1b). Implementing this
design resulted in the generation of a new family of GECIs, named after the progenitor NTnC [38],
exhibiting a set of unique features (Table 1). In comparison to GECIs with the classical GCaMP design,
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the NTnC-like family is characterized by a smaller molecular size, lower calcium-binding capacity,
higher tolerance to fusion partners, and a non-mammalian origin of calcium-binding domains. The
smaller molecular size is beneficial for packaging efficiency into viral particles and perhaps ensures
better folding and targeting to subcellular compartments, such as mitochondria and the endoplasmic
reticulum [39]. The lower calcium-binding capacity of the NTnC family (two or one calcium ion
per molecule vs four ions per molecule for GCaMP family) reduces the deleterious confound of
calcium buffering, which can corrupt the patterns of registered neuronal activity [30]. However, in
spite of the different stoichiometry of calcium binding sites in GCaMP and NTnC-like indicators,
they linearly respond to the increasing number of action potentials in the range determined by
affinity of the respective indicator to calcium ions [38,39]. Unlike the GCaMP-like GECIs, where
different tags affect their dynamic range and affinity for calcium ions [40], the GFP-like N- and
C-termini make the NTnC-like sensors tolerate fusions with other proteins by eliminating distortion
of calcium-binding domain. Utilization of the truncated version of troponin C from muscles as a
calcium-binding domain, which does not interact with endogenous proteins in mammalian cells,
minimizes potential disturbances on neural physiology.
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Figure 1. Molecular design of genetically-encoded calcium and potassium indicators. (a,b) The
structure of calcium indicators are shown as ribbon diagrams according to the crystal structures
of NTnC (protein database (PDB) 5MWC), dYTnC2 (unpublished), GAF-CaMP (combination of
GAF-domain of PaBphP phytochrome PDB 3C2W and CaM/M13-peptide pair from GCaMP6m
GECI PDB 3WLD), NIR-GECO1 (combination of the PAS-GAF domain of PaBphP phytochrome PDB
3C2W and CaM/M13-peptide pair from GCaMP6m GECI PDB 3WLD), LUCI-GECO1 (combination
of NanoLuc luciferase PDB 5IBO and GCaMP6m GECI PDB 3WLD), FGCaMP (unpublished), and
K-GECO (PDB 5UKG) in calcium-bound state. (c) The organization of potassium indicators is shown
schematically and according to the X-ray structures of Cerulean and mVenus fluorescent proteins (PDB
5OXC and 1MYW, respectively), and Kbp potassium binding protein from E.coli (PDB 5FIM).
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Table 1. The key characteristics and performance of the selected genetically-encoded fluorescent
calcium and potassium indicators.
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a ®, ratiometric, FRET—Förster (fluorescence) resonance energy transfer (FRET)-based indicator,
BRET—bioluminescence resonance energy transfer (BRET)-based indicator. b Excitation/emission wavelengths
for the brightest state. For ratiometric and FRET-based indicators two wavelengths or two pairs of wavelengths
correspond to apo- and saturated-states or ex/em of the donor and acceptor, respectively. c Brightness is a product
of quantum yield and extinction coefficient normalized to the brightness of EGFP. For ratiometric and FRET-based
indicators brightness of apo- and saturated-states or fluorescent protein acceptor and donor are shown, respectively,
*—two-photon brightness. d Dynamic range is maximally achievable ∆F/F between calcium/potassium-saturated
and apo-states. e Kd is the equilibrium calcium dissociation constant in the presence of 1mM MgCl2, * Kd values
measured in the absence of 1mM MgCl2; f koff are the off kinetics of dissociation from calcium/potassium ions
measured using stopped flow fluorimetry. ND—not determined.
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The original NTnC sensor was designed by inserting the troponin C calcium binding domain
into the bright green fluorescent protein mNeonGreen [38]. In contrast to GCaMP-like sensors, NTnC
exhibits negative fluorescence response, i.e., it reduces fluorescence upon calcium binding. NTnC
is characterized by high brightness and pH stability, inherited from mNeonGreen, but low dynamic
range (Table 1). Utilizing yellow fluorescent protein (YFP) as a sensing moiety helped to increase the
dynamic range but at the expense of brightness and pH stability [39,41]. While NTnC and YTnC are
suitable for reporting neuronal activity at single cell resolution in behaving mice under both one- and
two-photon microscopy, they exhibit lower overall performance than the GCaMP6 variants. However,
we found the NTnC-like sensors significantly outperform GCaMP6s when targeted to organelles such
as the mitochondria and endoplasmic reticulum [39]. Calcium homeostasis in mitochondria and the
endoplasmic reticulum plays crucial roles in cell physiology in health and disease [49–52]. However,
currently available GECIs are not optimized for calcium visualization in these organelles. Therefore,
the NTnC-like sensors represent promising templates for adjusting calcium affinity to match the range
of calcium concentration in mitochondria and the endoplasmic reticulum. For example, truncation of
the EF4-hand of the calcium-binding domain in YTnC2 indicator, which is capable of binding only
one calcium ion, decreased affinity of the indicator to calcium ions by ~10-fold. The generated sensor,
dYTnC2, showed optimal biochemical characteristics for measuring large calcium transients in the
endoplasmic reticulum (personal communication, Table 1).

There is a great need for GECIs with red-shifted fluorescence, but engineering red-shifted variants
has proven particularly challenging. Inserting calcium binding domains into red fluorescent proteins
easily disrupts folding and chromophore maturation [43,53]. Furthermore, red fluorescent proteins are
known to exhibit inferior photophysical properties compared to green fluorescent proteins such as
photoactivation under blue light illumination, leading to imaging artifacts [54–56]. Despite great efforts
in the development of red-shifted GECIs [34,42,54,56–58], only the latest generation of red GECIs is
suitable for imaging calcium dynamics in living organisms [9,43]. However, further engineering and
enhancement of the current red GECIs is certainly required before they can reach level of the best
performing green sensors (Table 1). Brightness and dynamic range are perhaps the main properties
requiring improvement. Another inherent drawback of red GECIs is their tendency to form bright
fluorescence puncta in cell bodies, especially during in vivo expression. The puncta were shown to
co-localize with a lysosomal marker LAMP-1. The aggregated proteins in the puncta do not show
calcium sensitivity and contribute to background fluorescence, thus reducing the overall quality of the
dynamic signal recordings. To reduce puncta formation, Shen et al. exploited the novel red fluorescent
protein FusionRed, known to exhibit good localization in neurons [43]. Replacing the fluorescent
moiety in R-GECO with a circularly permutated FusionRed generated the K-GECO indicator, which
indeed demonstrated no puncta-like localization in cultured neurons [43]. However, puncta formation
was not completely resolved in vivo in mice. K-GECO could report single action potentials in neurons
in zebrafish larva as well as detect calcium dynamics in the visual cortex of awake mice. However,
K-GECO1 did not provide the same level of in vivo sensitivity as the highly optimized jRGECO1a
(Table 1).

Red-shifted GECIs enable facile application in conjugation with channelrhodopsins for all-optical
interrogation of neuronal circuits [9,42,43,56]. Due to the wide action spectra of the majority of
channelrhodopsins, compared with the full width at half maximum of GFP-like fluorescent proteins
ranging from 30 to 70 nm, spectrally multiplexed optogenetic control with red GECIs excited at ~560
nm still remains challenging. Even one of the most blue-shifted channelrhodopsins, CheRiff [59], with
acceptable in vivo performance [60], generates a sustained inward current under 560 nm illumination at
moderate light power of ~15mW/mm2 that can cause substantial alternations in membrane potentials
during extended imaging [61,62]. Shifting fluorescence of GECIs into the near-infrared range will
provide completely crosstalk-free coupling with optogenetic tools. Near-infrared fluorescent proteins
derived from phytochomes [63] have shown to be useful for labeling neurons in vivo in mammals [64],
zebrafish [65], and flies [66]. Near-infrared light is also beneficial for the noninvasive whole-body
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imaging of small mammals [67,68] due to reduced autofluorescence, low light scattering, and minimal
absorbance at longer wavelengths. Interestingly, the first attempts engineering calcium sensors
based on the phytochrome-derived fluorescence proteins were unsuccessful. Obtaining functional
circularly permutated variants was impossible due to the phytochrome’s topology, with the N-
and C-termini far apart from each other, unlike in GFP-like proteins (personal communications).
Instead, the first near-infrared GECIs were engineered by inserting the calcium binding domain
into phytochrome-derived fluorescent proteins. In this respect, their design appears similar to
that of the NTnC-like family (Figure 1b). The GAF-FP [69] and mIFP [66] proteins were used as
fluorescent scaffolds producing GAF-CaMP [44] and NIR-GECO1 [45] indicators containing cGMP
phosphodiesterase/adenylate cyclase/FhlA transcriptional activator (GAF) and Per-ARNT-Sim-GAF
(PAS-GAF) domains from the phytochromes, respectively [63]. While GAF-CaMP has not been yet
tested in neurons, NIR-GECO1 was shown to detect single action potentials in cultured neurons
and intact mouse brain tissue. NIR-GECO1 is efficiently excited by far-red light in the range from
630 to 680 nm, enabling crosstalk free spectral multiplexing with the majority of channelrhodopsins
and other fluorescence sensors. In addition, NIR-GECO1 allowed mesoscale fluorescence imaging
of somatosensory cortex through the intact skin and skull of anaesthetized mice, although reliable
detection of fluorescent changes required averaging of multiple trials. As a first-generation indicator,
NIR-GECO1 falls short of the most extensively optimized fluorescent protein-based GECIs in several
critical performance parameters but is an exciting progression in the development of far red-shifted
calcium sensors.

An alternative method to record neuronal activity of a large number of neurons with single
cell resolution is the permanent labeling of neurons, as demonstrated by the CaMPARI calcium
sensor [70]. The CaMPARI family of light-inducible calcium sensors is based on EosFP green-to-red
photoconvertable fluorescent protein, allowing ex vivo visualization of integrated over time calcium
transients (Figure 1). The CaMPARI integrators are irreversibly and efficiently photoconverted from
a green fluorescent state to a red state by ultraviolet light (~405 nm) irradiation only in the presence
of elevated concentrations of calcium ions. The second generation of this family, CaMPARI2, is
characterized by improved dynamic range of photoconversion, brightness, faster calcium dissociation
kinetics, decreased photoconversion rate in inactive neurons, and compatibility with paraformaldehyde
fixation [40]. In addition, the authors introduced the anti-CaMPARI-red antibody that specifically
recognizes the photoconverted red form and thus allows immunohistochemical amplification of
calcium signal in fixed cells or tissue. The CaMPARI2 indicator enables acquisitions of snapshots of
calcium as a proxy for neuronal activity integrated during 30 seconds in the brain of zebrafish from
up to 6000 individual neurons. In this respect CaMPARI integrators are comparable with CaMP and
GECO indicators which allow simultaneous two-photon imaging of calcium activity over 10,000 cells
in visual cortex of mice with 2.5 Hz rate [71]. In spite of great progress in the development of the
CaMPARI sensors, they provide only a single snapshot of neuronal activity acquired during tens of
seconds and require irradiation with highly phototoxic ultraviolet light, which also suffers from poor
depth penetration in live tissue.

A significant step forward was made for improving the class of calcium sensors that employs
bioluminescence resonance energy transfer (BRET) phenomenon [72]. The newly-developed
BRET-based LUCI-GECO1 indicator combines the bright NanoLuc luciferase with emission maximum
at 460 nm with the topological version of GCaMP6s indicator (ncpGCaMP6s; Figure 1b) [46].
In comparison to the previously developed BRET-based GECIs, LUCI-GECO1 was characterized
by slightly wider dynamic range and higher brightness. Due to the lack of need for illumination for
fluorescence excitation, LUCI-GECO1 enables straightforward multiplexing with optogenetic tools,
such as channelrhodopsins. While BRET-based calcium sensors hold great promise for noninvasive
imaging in mammals, their application in vivo has not yet been demonstrated.
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3. Potassium Indicators

Sodium and potassium are important physiological ions crucial in maintaining and regulating
membrane potentials in neurons. In neurons at rest, cytoplasmic sodium levels are an order of
magnitude lower than extracellular (~10 mM intracellular vs ~150 mM extracellular) [73]. During an
action potential, intracellular sodium levels transiently increase [74,75], and because sodium is the
major current carrier of glutamate-gated voltage changes, noninvasive optical imaging of sodium
would enable the visualization of a key correlate of excitatory synaptic transmission. Potassium is also
a crucial regulator of cell excitability [76,77]. At rest, cytoplasmic potassium levels are high, but during
an action potential, there is a potassium efflux, the change in the absolute number of ions is relatively
modest [76,77]. Noninvasively recording potassium at single cell resolution would offer an important
proxy to neural activity. Unfortunately, there are no genetically-encoded sodium sensors developed to
date, and genetically-encoded potassium sensors are only an emerging class of optical probes. We note
that an important part of the difficulty in engineering potassium and sodium sensors—compared to
calcium sensors—is that while calcium concentrations during an action potential change by more than
four orders of magnitude, changes in potassium and sodium concentrations during an action potential
are only one order of magnitude. Thus, imaging potassium and sodium is inherently more difficult
than imaging calcium transients owing to the more subtle changes in ion concentration.

Genetically-encoded potassium indicators (GEPI) are currently represented mainly by three
Förster (fluorescence) resonance energy transfer (FRET)-based indicators (Figure 1c; Table 1). All three
GEPIs share the same Kbp protein from E. coli as a potassium binding domain and utilize CFP/YFP
fluorescent FRET-pairs to register conformational changes in the Kbp part [47,48]. Since GEPI
dissociation kinetics from potassium ions is limited by hundred milliseconds, they are not appropriate
for the detection of fast potassium dynamics during neuronal activity. Meanwhile, GEPIs were
successfully applied to monitor slower potassium transients in different cellular compartments in
cultured cells. Thus, further development of faster and non-FRET-based variants of GEPIs with higher
dynamic range are in high demand.

4. Voltage Sensors

Voltage changes are the primary means of millisecond-scale computation in neurons because
they enable sophisticated fast dendritic computations and rapid transmission of signals across long
distances [78]. Voltage changes are the most direct measure of a neuron’s electrical potential [79].
Therefore, optical voltage sensors are an ideal method to noninvasively measure electrical activity
at single cell resolution. However, despite recent progress in development of new voltage sensitive
probes [60,65,80–82], voltage imaging still remains technically more challenging than calcium imaging.
One of the major challenges is associated with the sub-millisecond timescale of membrane potential
changes during neuronal activity. Subsequently, voltage imaging requires kHz acquisition rates to
resolve brief voltage changes upon action potentials, while calcium imaging is typically performed at 1
to 10 Hz. Although currently available scientific-grade cameras can perform imaging at kHz rates,
these high speed result in pixel counts reduced by an order of magnitude than those commonly used
for calcium imaging. Furthermore, compared to the GECIs expressed in the bulk cytosol, the maximum
number of voltage sensor molecules that can be localized on plasma membrane is several orders of
magnitude smaller. These factors significantly reduce the number of photons integrated during each
acquired frame making fluorescence signal increasingly difficult to distinguish cells from background
fluorescence in brain tissue.

The first proof of principle of a fully genetically-encoded voltage sensor was reported in 1997 [83],
followed by almost two decades of intensive protein engineering efforts to develop a fluorescence
sensor capable of reporting neuronal activity with single cell, single spike resolution in awake mice [84].
To date a number of improved and newly engineered genetically-encoded voltage indicators (GEVIs)
with diverse spectral and biophysical characteristics reached the level of performance sufficient for
in vivo imaging with high temporal precision at single-cell resolution in awake mice surpassing
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beyond “proof of principle” applications (Table 2). Currently, the majority of developed GEVIs
are based on two types of voltage-sensitive moieties: microbial rhodopsins and voltage-sensing
domains (VSDs) from voltage-sensitive phosphatases. Naturally-occurring and engineered microbial
rhodopsins have already found widespread application in neuroscience due to their ability to optically
control electrical activity of genetically targeted neurons [85]. Photoactivated rhodopsin translocates
ions across the plasma membrane thus modulating membrane potentials, usually in a predictable
manner [86–88]. Several years ago, Adam Cohen’s group made a discovery that paved the way
for the utilization of opsins not only for manipulating membrane potential but also for observing
changes in voltage across the plasma membrane. His group showed that one class of opsins,
light-driven proton pumps, can work in reverse, i.e., emitting light in response to membrane voltage
alternations [89,90]. Indeed, spectroscopic studies of the proton pumping mechanism in rhodopsins,
cloned from archaea and bacteria, revealed a complex spectroscopic photocycle involving multiple
intermediates with diverse absorption spectra [89–91]. Certain transitions between intermediates
appeared to be voltage dependent while occurring at submillisecond time scales [92]. Furthermore, a
single point mutation in the chromophore vicinity of proton pumps was enough to almost completely
abolish light-driven currents while retaining their voltage dependent spectral changes. Altogether,
these features confer optical recording of membrane potential dynamics at biologically-relevant
temporal resolution via probing opsin absorption spectrum. Voltage modulated spectral changes, or the
so called electrochromic effect, can be read-out via nonradiative quenching of an attached fluorescent
moiety, a form of FRET [93,94]. Using electrochromic FRET (eFRET) approach, a palette of GEVIs with
fluorescence ranging from green to red were engineered by appending various fluorescent proteins to
the C-terminus of the proton pumping microbial opsins [80,84,95,96] (Figure 2a). The first generation
of eFRET-opsin voltage sensors, incorporating Mac and Arch proton pumps [97] as voltage-sensing
scaffolds, can report single action potentials in cultured neurons with a moderate signal-to-noise ratio
(7–9 at 1 kHz acquisition rate) [95,96]. However, these sensors suffer from poor membrane localization
and relatively slow kinetics, on the order of few milliseconds, that precluded their adaptation by
the neuroscience community. Substantial improvement in overall performance was achieved by
utilizing the blue-shifted Acetabularia acetabulum rhodopopsin (Ace) [98] in fusion with the very bright
green fluorescent protein mNeonGreen. The resulting group of GEVIs, usually collectively called
Ace2N-mNeon (2N stands for the point mutation abolishing proton pumping), is characterized by
high brightness, moderate photostability, and submillisecond kinetics, providing high spike detection
fidelity under wide-field microscopy in both ex vivo and in vivo preparations [84]. For example, the
Ace2N-4aa-mNeon variant, containing four amino acids in the linker between Ace and mNeonGreen,
was demonstrated to report single action potentials in individual neurons in the primary visual cortex
of awake mice (Table 1). In turn, a variant with a shorter linker, Ace2N-2aa-mNeon, was able to detect
odor-evoked voltage signals in single olfactory projection neurons and their dendritic arbors and
axonal boutons in live fruit flies.

Table 2. Performance of selected genetically-encoded and hybrid fluorescent voltage sensors.

Sensor Ex/Em
(nm)

∆F/FAP
(%)

SNR On Kinetics a

(ms)
Off Kinetics a

(ms)
Number of Simultaneously
Imaged Neurons In Vivo

Ref

Ace2N-4aa-mNeon 506/517 −6.5 ND 0.37 (58)/5.5 0.5 (60)/5.9 2 in primary visual cortex L2/3 [84]
ASAP3 485/510 −10 b 19 b 0.94 (72)/7.2 3.8 (76)/16 1 in primary visual cortex L1

and L2/3
[81]

Voltron525 525/549 −6.5 b 27 b 0.64 (61)/4.1 0.78 (55)/3.9 46 in primary visual cortex L1 [82]
VARNAM 558/592 −4.8 12 0.9/5.2 0.8/4.7 Aggregated population signal [80]
QuasAr2 590/715 15 8.5 0.3 (62)/3.2 0.3/(73) 4.0 14 in mouse nodose ganglia [99]
paQuasAr3 590/715 23 b 28 b 0.9 (57)/15 0.93 (79)/15 6 in hippocampus [60]
Archon1 590/715 53 b 37 b 0.61 (88)/8.1 c 1.1 (88)/13 c 18 in CA1 hippocampus [65]

Ex—excitation wavelength; Em—emission wavelength; SNR—signal-to-noise ratio per single action potential
measured in intact mouse brain slice at 22 ◦C under wide-field microscopy at 500 Hz acquisition rate; ND—not
determined. a voltage kinetics evaluated by bi-exponential fitting (in the format fast/slow), where the value in
parentheses represents the % of current magnitude in the fast τ component, measured in HEK cells at 34 ◦C; b values
measured for soma localized version of the sensor; c measured in cultured neurons.
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Coupling Ace2N with the bright fluorescent protein mRuby3 led to the development of a
red-shifted GEVI named VARNAM [80], which inherited the fast kinetics of Ace2N and high brightness
and photostability of mRuby3. However, despite a single point mutation that presumably improved
eFRET efficiency by red-shifting absorbance spectrum of Ace2N, VARNAM exhibits lower voltage
sensitivity than other advanced GENIs suitable for in vivo imaging (Table 1). For example, averaging
up to 10 optical trails was required to resolve evoked excitatory and inhibitory postsynaptic potentials
using VARNAM in intact brain tissue [80]. In live mice, VARNAM was able to track cell-type specific
oscillatory dynamics for subsets of neurons in somatosensory and frontal cortex and CA1 of the
hippocampus using the fiberoptic imaging. In addition, VARNAM reported spontaneous neuronal
activity with single spike precision in multiple cell types in live fruit flies.

Another recently developed fluorescent voltage sensor utilizing Ace2N as a voltage sensing
domain is Voltron [82]. While Voltron is not a fully genetically-encoded probe, but rather a
chemogenetic or hybrid voltage sensor, we discuss it here in comparison with other GEVIs due
to its high performance in multiple species in vivo, including mice, zebrafish, and fruit flies. Voltron
combines Ace2N with a self-labeling protein tag domain that covalently binds improved rhodamine
dyes such as the Janelia Fluor® (JF) dyes [100] (Figure 2b). While a palette of JF dyes with emission
maxima ranging from 505 to 635 nm were shown to work well with Voltron in cultured neurons,
the Voltron/JF525 combination exhibited the highest voltage sensitivity and, thus, used for all
further in vivo applications. To perform voltage imaging in vivo in mice, Voltron was fused to the
soma-localization motif from the Kv2.1 potassium channel [101] to reduce neuropil fluorescence
contamination thus improving single cell resolution, similarly to the strategy previously used to enable
single-cell precision optogenetics [102,103]. Using a simple wide-field imaging set-up, soma-localized
Voltron reported single action potentials in hippocampal parvalbumin neurons and visual cortex
pyramidal neurons in awake mice. Particularly impressive was the ability to perform single spike
detection in up to 46 GABAergic neurons in visual cortex layer I imaged simultaneously for over 15
minutes (Table 2). Voltron also retained its high performance in live zebrafish and fruit flies, reliably
reporting single action potentials. Voltron relies on bright synthetic dyes delivered exogenously.
While dye administration is straightforward, even for mice, easily passing through the blood brain
barrier, quick internalization and accumulation of the JF dyes in the cytoplasm of the cells create
high background fluorescence, significantly reducing imaging quality. Development of new dyes that
fluoresce only upon binding to the HaloTag will significantly improve Voltron class of GEVIs.

Among all tested light-driven proton pumps, Arch uniquely possesses dim near-infrared
fluorescence under strong red laser excitation [90]. Furthermore, Arch fluorescence intensifies as
membrane potential increases. The mechanism of this voltage sensitive fluorescence is still poorly
studied, but might involve chromophore protonation [92]. Hochbaum et al. subjected Arch to
directed molecular evolution to improve its brightness and voltage sensitivity [59]. The result, dubbed
QuasAr2, is capable of reporting single action potentials with high temporal resolution in intact
brain tissue and even in mouse nodose ganglia in vivo [99] (Table 2). Near-infrared fluorescence
and high voltage sensitivity of QuasAr2 enabled the recording of optogenetically-triggered synaptic
inputs in single trials to probe synaptic strength in intact brain tissue [27]. However, due to its
extremely low brightness, requiring up to three orders of magnitude higher light intensity than for GFP
imaging, QuasAr2 did not become a widely used tool. Subsequent enhancement of QuasAr2 brightness
generated several variants with distinct biochemical and photophysical characteristics (Figure 2c).
For example, Adam Cohen’s group developed a blue light activated version of QuasAr, named
NovArch [104] and paQuasAr3 [60]. Near-infrared fluorescence of NovArch and paQuasAr3 can be
reversibly enhanced by blue illumination without affecting voltage sensitivity (Table 2). This blue light
enhanced brightness of paQuasAr3 is sufficient to perform population voltage imaging with single cell
resolution in hippocampal cells of awake mice. At the same time, it complicates combining voltage
imaging with optogenetic control by channelrhodopsins. In another study, significant improvement
of near-infrared brightness was achieved by implementation of a robotic multidimensional directed
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evolution approach [65]. Large libraries, up to tens of millions of independent clones, expressed in
mammalian cells were screened for improved brightness and localization using robotic cell picker.
Selected variant Archon1 exhibited several fold higher fluorescence and nearly ideal membrane
localization in neurons when expressed in vivo in mice, zebrafish, and worms. The soma-localized
version of Archon1 enabled population voltage imaging in striatum, cortex, and hippocampus of
behaving mice under a cheap and simple wide-field imaging set up (personal communication).
In addition, Archon1 was the first reported GEVI to report single action potentials in zebrafish
larvae. Despite several generations of improved Arch-derived voltage sensors, the sensors still suffer
from very low fluorescence brightness in comparison to other classes of GEVIs.

In the past few years the field of GEVIs was strongly dominated by opsin-based sensors,
however, opsin-based sensors all share one disappointing limitation: they do not exhibit voltage
sensitivity under two-photon excitation. Although fundamentally and technically more challenging
than wide-field imaging, two-photon microscopy offers increased imaging depth with higher spatial
resolution in scattering tissue. For example, two-photon microscopy has been used for subcellular
voltage imaging in live fruit flies using GEVIs [105–107] as well as dendritic [108] and somatic [109]
voltage using chemical dyes. The development of the improved version of the ASAP sensor [110],
named ASAP3, enabled two-photon voltage imaging in awake mice using a fully genetically-encoded
probe [81]. The ASAP family of GEVIs is based on the insertion of a circularly permuted EGFP into the
voltage-sensing domain from Gallus gallus of voltage-sensitive phosphatases between the third and
fourth transmembrane domains (Figure 2d). ASAP3 development involved random mutagenesis of
the linkers between circularly permuted EGFP and voltage-sensing domain to optimize coupling of
four transmembrane helix movement during depolarization to chromophore protonation. Using the
soma-localized version of ASAP3, Chavarha et al. performed reliable voltage imaging with single cell
single spike resolution in visual cortex at a depth up to ~130 µm. Improved performance of ASAP3
compared to its precursors can be partially attributed to its kinetics. ASAP3 has a submillisecond on
rate, but several-fold slower off kinetics, unlike opsin-based sensors (Table 2). This combination of
kinetic parameters results in significant boarding of optical action potential waveforms thus increasing
the effective number of photons emitted during spikes. However, fast two-photon imaging is still
limited to a small imaging area and recording of more than one cell at a time still represent significant
technical challenge. Additionally, wide-field imaging of opsin-based sensor is more cost efficient.
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5. Neurotransmitter Indicators

Neurons communicate with one another using chemical messengers called neurotransmitters.
Neurotransmitters are released by a pre-synaptic cell via vesicle-mediated exocytosis into the synaptic
cleft [111], where they reach concentrations in the high micromolar range [112]. Here, neurotransmitters
bind to receptors on the post-synaptic cell, initiating second messenger signaling cascades (via
metabotropic receptors) or evoking ion flux (via ionotropic receptors) [113], and are subsequently
cleared on the millisecond time scale from the post-synaptic cleft by neurotransmitter transporters [114].
In addition to classical neurotransmitters, including glutamate [115], gamma-aminobutyric
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acid (GABA) [116], and other biogenic amines [117], neurons also signal using non-classical
neurotransmitters, such as peptides [118], endocannabinoids [119], and even gases [120]. Recent
advance in protein engineering have yielded a number of fully genetically-encoded fluorescent sensors
enabling real time optical detection of a few key neurotransmitters with high specificity and sensitivity
within the intact brains of several model organisms.

All genetically-encoded neurotransmitter indicators (GENIs) utilize two types of ligand-binding
proteins as sensing moieties, either periplasmic-binding proteins (PBP) or G protein-coupled receptors
(GPCRs; Figure 3). PBPs are bacterial non-enzymatic receptors with specificity for a wide variety of
small molecule ligands, including neurotransmitters. Upon ligand binding, PBPs undergo significant
conformational changes [121] sufficient to modulate fluorescence of covalently bound optical probes
thus providing versatile scaffolds for fluorescence biosensor engineering [122–124]. To date, PBPs
have been used to develop three different classes of genetically-encoded neurotransmitter indicators
(GENIs) specialized for the optical detection of glutamate, GABA, and glycine. The first GENIs,
FLIPE and superGluSnFR, capable of reporting transients of the chief excitatory neurotransmitter
glutamate in cultured neurons, were engineered by fusing the glutamate PBP GltI from Escherichia
coli (also known as ybeJ) with a FRET pair of cyan fluorescent protein (CFP) and yellow fluorescent
protein (YFP) [125,126]. However, a relatively low signal-to-noise ratio, an inherent drawback for
most of FRET-based sensors, significantly limited applications of FLIPE and superGluSnFR in vivo.
A breakthrough in imaging glutamate transients in vivo was achieved with the development of a single
FP-based sensor, iGluSnFR [127], boasting a positive intensiometric fluorescence response (Table 3).
iGluSnFR was constructed by insertion of a circularly permuted (cp) EGFP into the interdomain
hinge region of GltI with further optimization of linkers between cpEGFP and GltI to improve the
fluorescence dynamic range (Figure 3a). For expression in neurons, iGluSnFR is targeted to the
extracellular side of the plasma membrane by fusion with a PDGFR peptide segment, similar to the
first generation of glutamate sensors [125,126]. Two-photon microscopy of iGluSnFR allowed single
trial recordings of glutamate transients at single dendritic spines as well as dendritic branches in the
primary motor cortex of awake behaving mice [127]. In addition, iGluSnFR reliably reported synaptic
activity in vivo in zebrafish and the nematode Caenorhabditis elegans [127]. However, due to its slow off
rate, with a reported decay half-time of 92 ms, iGluSnFR failed to resolve fast transients associated with
local glutamate release during external electrical stimulations of neurons higher than 10 Hz [128,129],
highlighting a clear need for a glutamate sensor with improved biophysical characteristics.



Appl. Sci. 2019, 9, 562 13 of 26

Appl. Sci. 2019, 9, 562 13 of 25 

fast transients associated with local glutamate release during external electrical stimulations of 
neurons higher than 10 Hz [128,129], highlighting a clear need for a glutamate sensor with improved 
biophysical characteristics. 

 
Figure 3. Molecular design of genetically-encoded neurotransmitter indicators. (a) PBP-based 
glutamate and GABA sensors. (b) PBP-based glycine sensor. (c) GPCR-based dopamine, 
acetylcholine, and norepinephtine sensors. (d) iTango2 system for dopamine detection. 

  

Figure 3. Molecular design of genetically-encoded neurotransmitter indicators. (a) PBP-based
glutamate and GABA sensors. (b) PBP-based glycine sensor. (c) GPCR-based dopamine, acetylcholine,
and norepinephtine sensors. (d) iTango2 system for dopamine detection.



Appl. Sci. 2019, 9, 562 14 of 26

Table 3. Characteristics of selected genetically-encoded fluorescent neurotransmitter reporters.

Sensor Ligand Ex/Em
(nm)

∆F/F (%) Kd (µM) On
Kinetics
(ms)

Off
Kinetics
(ms)

In Vivo Imaging Ref

iGluSnFR Glu a 490/510 100 4.9 15 92 Single dendritic
spines

[127]

SF-iGluSnFR-A184S Glu a 490/510 69 0.6 85 450 Single dendritic
spines

[130]

SF-iGluSnFR-S72A Glu a 490/510 250 34 5 11 Single dendritic
spines

[130]

SF-Venus-iGluSnFR Glu a 515/528 66 2.0 ND ND Single dendritic
spines

[130]

iGluu Glu a 490/510 170 53 0.7 3 Not tested [129]
R-iGluSnFR1 Glu a 562/588 −33 18 ND ND Not tested [131]
iGABASnFR GABA 485/510 10b ~9 b ~25 c ~60 c Aggregated

neuropil imaging
[132]

GlyFS Gly 434/477
515/528
(FRET)

28.3
19.0

28
21

ND ND Not tested [133]

dLight1.1 DA 490/516 230 d 0.33 d ND ND Aggregated signal [134]
dLight1.2 DA 490/516 340 d 0.77 d 9.5 e 90 e Aggregated signal [134]
GRABDA1m DA 490/510 90 0.13 80 e 3100 e Aggregated signal [135]
GRABDA1h DA 490/510 90 0.01 110 e 17,150 e Aggregated signal [135]
GACh2.0 ACh 490/510 90 2 280 d 760 d Single neurons with

15 trails averaging
[136]

GRABNE1m NE 490/510 230 1.9 72 d 680 d Aggregated signal [137]
GRABNE1h NE 490/510 150 0.093 36 d 1890 d Not tested [137]
iTango2 DA 488/507

554/581
900 ND ~105-106 NA Single neurons [138]

Ex—excitation wavelength; Em—emission wavelength; ∆F/F—maximally achievable fluorescence changes between
ligand-free and ligand saturated states; Kd—ligand dissociation constant measured for cultured neurons expressing
corresponding sensor, unless otherwise stated; ND—not determined; NA—not applicable. a shows similar affinity
for Asp; b characterized in vitro; c estimated from the trace for one action potential in cultured neurons presented in
the corresponding publication; d measured in HEK cells; e measured in acute brain slice.

Further optimization of iGluSnFR by rational design resulted in variants with improved
brightness, kinetics, and altered glutamate affinity. The substitution of cpEGFP with a circularly
permutated version of superfolder GFP (cpsfGFP) significantly enhanced brightness and photostability
giving rise to a new series of the SF-iGluSnFR glutamate sensors [130] (SF stands for superfolder
GFP used as reporting moiety; Figure 3a). Subsequent mutagenesis of the GltI domain in
SF-iGluSnFR generated two variants, named SF-iGluSnFR-A184S and SF-iGluSnFR-S72A, which
exhibit higher affinity and faster kinetics, respectively, compared to the original iGluSnFR [130] (Table 3).
The SF-iGluSnFR-A184S variant significantly outperformed iGluSnFR in detecting stimulus-evoked
glutamate release at individual dendritic spines imaged in neuropils of the visual cortex under
two-photon excitation. In turn, the faster off rate of SF-iGluSnFR-S72A enabled almost an order
of magnitude higher temporal resolution than was previously achievable with original iGluSnFR.
For example, SF-iGluSnFR-S72A fluorescence was able to resolve synaptic responses in brain tissue
during single action potentials evoked at frequencies up to 100 Hz. Even higher temporal resolution
was achieved by the iGluSnFR-S72T point mutant, named iGluu (u stands for “ultrafast”) [129], which
was able to resolve responses at single synapses in hippocampal slices during single action potentials
evoked even at frequencies of 100 Hz. However, it showed about 1.5-fold lower sensitivity than
SF-iGluSnFR-S72A under similar imaging conditions (Table 3). Overall, the kinetics and sensitivity of
SF-iGluSnFRs and iGluu make them superior to the fastest green calcium sensor GCaMP6f in terms of
monitoring presynaptic activity, as was demonstrated for granule cell axons within mouse cerebellar
brain slices.

Mutagenesis of the fluorescence moiety of iGluSnFRs enabled diversification of the spectral
properties of the glutamate sensor, highlighting the versatility of its molecular design. Introduction of
point mutations in the chromophore forming tripeptide led to SF-iGluSnFR variants with blue (emission
peak ~450 nm), cyan (emission peak ~475 nm), and yellow (emission peak ~530 nm) fluorescence [130].
On the other hand, substitution of cpEGFP with cpmApple from the R-GECO1 calcium sensor resulted
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in the R-iGluSnFR glutamate sensor with red emission peaked at ~590 nm [131]. Despite subsequent
intense optimization by random mutagenesis resulting in an additional 12 amino acid mutations
throughout the protein, performance of R-iGluSnFR is far inferior to that of green glutamate sensors,
with a dynamic range of only -33% compared to 250% for SF-iGluSnFR-S72A, thus precluding its
in vivo application. Among chromatic variants of iGluSnFR, only the sensor with yellow emission,
SF-Venus-iGluSnFR, was utilized for in vivo imaging in mouse visual cortex. The major advantage
of SF-Venus-iGluSnFR over green fluorescence sensors for glutamate is its high brightness under
two-photon excitation at 1,030 nm, compatible with powerful femtosecond fiber lasers, which are
gaining popularity in the neuroscience community due to their affordability and usability. Currently,
fluorescent sensors for glutamate represent the most diverse group of GENIs, however, the most
practical variants are still limited to green fluorescence.

The versatility of the PBP-based sensor design was also demonstrated by the development of
green fluorescent sensors for the chief inhibitory neurotransmitter GABA, called an intensity-based
GABA Sensing Fluorescence Reporter or iGABASnFR [132] (Figure 3a). Marvin et al. used the newly
identified PBP Pf622 cloned from Pseudomonas fluorescens [139] as a GABA-binding domain. The initial
version of the sensor, created by insertion of cpsfGFP into the Pf622 domain, was further optimized by
side-directed mutagenesis to increase affinity and sensitivity (Table 3). The iGABASnFR was shown to
report GABA release events over large volume of brain tissue in vivo in mouse visual cortex and in
zebrafish cerebellum with sub-second kinetics, although with rather low fluorescence changes at just
10%. While iGABASnFR is a solely available fully genetically-encoded sensor for GABA, it will most
likely require further optimization to enhance affinity, kinetics, and sensitivity before it can be widely
adopted by the neuroscience community.

Development of the PBP-based sensor for Gly appeared to be more challenging. The wild-type PBP
Atu2422 from Agrobacterium tumefaciens, selected as a binding domain for glycine sensor development,
also displays promiscuous binding for L-serine and GABA [140]. To increase specificity of Atu2422,
Zhang et al. employed computationally-guided mutagenesis. Introducing steric obstructions into the
ligand-binding site of Atu2422 produced a binding domain highly selective for glycine. Fusing the
engineered binding domain with CFP-YFP FRET pair, but not with cpEGFP as in iGluSnFR, resulted in
the functional glycine sensor, denoted GlyFS, characterized by ~28% of fluorescence dynamic range
(Table 3). Membrane targeting of GlyFS via a PDGFR peptide fusion, as used for the iGluSnFR and
iGABASnFR sensors, reduced dynamic range to 4%, which is 7-fold lower than that in vitro, due
to inefficient membrane trafficking of the protein. Instead, extracellular space immobilization was
performed through a biotinylation-based technique that anchors proteins to the outer side of the
plasma membrane (Figure 3b). Taking advantage of the GlyFS ratiometric response, the authors
performed measurements of the absolute concentration of Gly in brain slices revealing dependency of
Gly concentration on animal age. The suggested immobilization technique requires biotinylation of
cell surface in intact brain tissue with subsequent delivery of the GlyFS sensor and streptavidin [141].
While the biotinylation-based technique was demonstrated to be compatible with tumor imaging in
live mice [142], it might not be feasible for neuroimaging in vivo thus limiting GlyFS application to
in vitro and ex vivo preparations. The GlyFS engineering is an inspiring example showing that PBPs
are flexible templates for generating diversity of binding domains. Nevertheless, GlyFS still requires
further development to increase its usefulness and applicability for neuroscience research.

The second class of ligand-binding domains utilized for GENI engineering is represented by
GPCRs. GPCRs share a highly conservative 3D structure comprising of seven α-helix transmembrane
domains (TM) and constitute the majority of receptors with high specificity for endogenous
neurotransmitters. Structural studies indicate that the largest conformation changes upon ligand
binding to GPCRs by occurs at the cytosolic end of TM6. The α-helix of TM6 can undergo more than 6
Å shift outwards from the helix bundle center at the same time initiating the 2–3 Å shift of TM5 [143,144].
For this reason, the third intracellular loop, located between TM5 and TM6, is a primary target for
insertion of reporting moieties to engineer GENIs. Indeed, first generation of GPCR-based sensors
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was constructed by insertion of FRET donors and acceptors into the third intracellular loop and at the
shortened C terminal domain [145–148]. The FRET-based sensors exhibited good specificity and affinity
to agonists as well as adequate kinetics, however, their utility for in vivo imaging is limited due to the
relatively modest ~10%, changes in FRET signal. Very recently, an alternative design of GENIs was
suggested to overcome this limitation. Incorporation of the conformationally sensitive cpEGFP into the
third intracellular loop enabled over an order of magnitude larger fluorescence changes during GPCR
activation than for the FRET-based sensors while preserving high specificity and reasonable kinetics
of fluorescence response (Figure 3c). Typically, this engineering strategy involves three consecutive
steps: (i) optimization of the insertion site within third intracellular loop of GPCR; (ii) optimization
of the linkers between cpEGFP and GPCR; (iii) tuning ligand affinity by point mutations within the
ligand-binding pocket. Moreover, the bulky cpEGFP moiety introduced into the intracellular loop
almost completely demolish coupling with major GPCR downstream pathways, presumably due
to the steric hindrance imposed for G protein or arrestin interaction with the GPCR [149,150]. As a
result, this design strategy was successfully exploited to develop a series of GPCR-based sensors
suitable for in vivo imaging of dopamine (DA), acetylcholine (ACh), and norepinephrine (NE), also
called noradrenaline (NA), in multiple model organisms. In addition, as a proof of concept a class of
sensors for other neuromodulators and neuropeptides were engineered using Gs-coupled β1 and β2
adrenergic receptors, Gi-coupled κ and µ-type opioid receptors, and Gq-coupled serotonin receptor-2A
and melatonin type-2 receptor [134].

Two groups in parallel independently developed green fluorescence DA sensors with similar
biochemical characteristics (Table 3). Patriarchi et al. reported a series of DA sensors, called
dLight, developed based on the human Dopamine Receptor D1 (DRD1) [134]. Two variants in
this series, dLight1.1 and dLight1.2, showed optimal combination of apparent DA affinity and
sensitivity and were used for in vivo imaging in behaving mice (Table 3). The higher affinity dLight1.1
sensor enabled visualization of spontaneous and optogenetically evoked dopamine transients in
the nucleus accumbens by recording aggregated fluorescence signal from multiple cells using fiber
photometry. Under these imaging conditions, dLight1.1 could report both activation and inhibition
of dopamine transients resolving individual spikes at up to 5 Hz stimulation frequency. Higher
spatial resolution of dopamine imaging was achieved under two-photon microscopy of dLight1.2
expressed in layer 2/3 neurons of the cortex during a visuomotor learning task. Two-photon
imaging with micron-resolution revealed a dopamine transient map with functionally heterogeneous
dopamine signals in the cortex. In contrast, utilizing Dopamine Receptor D2 (DRD2) as a sensing
moiety, Sun et al. developed a pair of alternative dopamine sensors, named genetically-encoded
GPCR-activation-based-DA sensors (GRABDA) [135]. Overall, in comparison to the dLight sensors,
two selected variants, GRABDA1m and GRABDA1m, are characterized by several fold smaller dynamic
range and slower kinetics but higher apparent affinity to DA (Table 3). Similar to the dLight sensors,
the signal-to-noise ratio and temporal resolution of GRABDA were sufficient to record the dynamic
bi-directional changes during DA activation and inhibition in dorsal striatum and nucleus accumbens
in behaving mice using fiber photometry. In particular, imaging GRABDA in nucleus accumbens
revealed a time-locked DA elevation aligned to various sexual behaviors, confirming an important role
of DA in behavioral motivation, anticipation, or arousal. In addition, the GRABDA sensors were shown
to readily respond to visually induced DA release in the intact brain of the zebrafish larvae as well
as reveal compartmentalized DA dynamics in the mushroom body of fruit flies with single neuron
resolution. In summary, two groups of the currently available DA sensors demonstrated comparable
performance in vivo and selection of a particular variant have to be determined based on the exact
intended application.

Similar design approaches enabled the development a pair of NE sensors with altered ligand
affinity based on the α-adrenergic receptor (α2AR) [137]. Two NE sensors, named GRABNE1m and
GRABNE1h, are characterized by micromolar and nanomolar apparent affinity for NE, respectively, and
exhibit several fold increase in fluorescence upon NE binding when measured in cultured cells (Table 3).
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Due to its slightly higher dynamic range, GRABNE1m is the preferred variant for in vivo imaging.
For example, GRABNE1m allowed reliable detection of NE release in locus coeruleus and hypothalamus
in freely moving mice using fiber photometry. In addition, confocal imaging of GRABNE1m-expressing
neurites in the optic tectum of zebrafish revealed a time-locked increase in green fluorescence during
looming stimuli.

Utilizing the human muscarinic acetylcholine receptor 3 as a sensing moiety enabled development
of green fluorescence sensor for ACh, named GACh2.0 [136]. While GACh2.0 exhibited similar
dynamic range to that of the GRABDA sensors and adequate affinity in cultured cells (Table 3), its
in vivo performance was not sufficient for single-trial imaging of the ACh transients when tested
under two-photon microscopy in visual cortex in mice. Nevertheless, in intact brain tissue GACh2.0
showed ~5% fluorescence changes in a single trial in medial entorhinal cortex during multiple pulses
of electrical stimulation, though single pulse stimulation still could not be detected. The poor in vivo
performance of GACh2.0 can be attributed to severe sensor mislocalization when expressed in brain
tissue; further improvement will certainly require optimization of membrane trafficking in vivo.
Furthermore, GACh2.0 activation exhibited downstream coupling to Gq-dependent calcium signaling.
While the coupling was about seven-fold smaller compared to wild-type M3R, it still was much
higher than for other analogous GPCR-based neurotransmitter sensors. Therefore, the Sindbis viral
expression system, which permitted a more rapid (~18 h) and robust expression, was used for the
GACh2.0 expression in brain slices and in vivo, while other GPCR-based GENIs were shown to be
performing well with the widely used adeno associated virus (AAV) gene delivery.

Activation of the native downstream-coupled pathways by GPCR-based GENIs is usually an
undesired drawback due to potential artifacts. However, it is possible to engineer GPCR-coupled
downstream pathways for optical signal activation, for example, by inducing the expression of a
reporter gene [151–153]. One such fully genetically-encoded system is the Tango assay. The Tango
system couples a transcription factor to a GPCR receptor via a specific tobacco etch virus (TEV)
protease–sensitive cleavage site. The GPCR activation recruits TEV protease fused to β-arrestin,
which releases tethered transcription factor (tTA) by cleavage TEV site, initiating expression of a
reporter gene [152]. Signal amplification via gene expression enables single-cell resolution detection
of neurotransmitter release with nanomolar sensitivity. Recent modification of the Tango system,
named DRD2-iTango2, enabled its application for in vivo detection of DA release in the mouse nucleus
accumbens during locomotion. DA release was read out by GFP expression activated via dopamine
receptor 2. As a main difference to the first generation Tango systems, iTango2 incorporated improved
light-inducible dimer [154] (iLID; Figure 3d). This modification prevented access by TEV protease in
the dark state thus significantly improving signal-to-noise ratio and reducing background fluorescence,
thus overcoming the main caveats of the original Tango system. As a result, iTango2 represents
three-component fully genetically-encoded system with highly modular design (Figure 3d), that can be
easily adopted to the end user needs. For example, the iTango2 system was demonstrated to work well
in cultured cells with various GPCRs, such as neuropeptide Y receptor type 1, cannabinoid receptor
type 1, and serotonin receptor 1A. At the same time, iTango2 can be designed to conditionally express
any gene of interest. For instance, using a light-driven chloride pump as a downstream expressing
gene it was possible to gain optogenetic control over the behavioral relevance of a temporally and
genetically identified population of neurons. In comparison to the most of the GENIs described above,
the iTango2 system enables read out with single cell resolution, rather than recording aggregated
signal from multiple cells expressing sensor (Table 3). However, higher spatial resolution comes at
the cost of significantly reduced temporal resolution, on the order of tens of minutes, as well as the
inability to record inhibition of neurotransmitter release. In addition, DRD2-iTango requires efficient
co-expression of three genes packed into the separate AAVs that may impose optimization of multiple
AAV co-expression for different cells types and brain regions.
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6. Conclusions

Genetically-encoded sensors are indispensable tools for neuroscientists because they enable the
study of neural population dynamics, circuit organization, and the activity patterns of specific cell types
and even distinct organelles. We predict sensors for key signaling molecules will continue to improve in
terms of brightness, kinetics, localization, toxicity, and red-shifted variants, expanding the toolbox for
neuroscientists in important and exciting ways. For example, expanded genome databases [155,156]
and directed evolution strategies [157,158] expand the resources available to protein engineers to
identify and optimize ligand binding domains.

The development of new imaging modalities, such as prisms to image across midline
fissures [159,160] and gradient index (GRIN) lenses to image deep brain structures [161,162], are
beginning to afford optical access to historically inaccessible brain regions, and, in combination with
the development of new sensors, facilitate more vigorous interrogation of brain function. Optical
indicators are also amenable to methods aimed at manipulating brain activity, such as optogenetic and
chemogenetic actuators, permitting the simultaneous observation and manipulation of neural activity.
Parallel advances in complementary technologies, such as brain clearing and tissue expansion [163,164],
further broaden the power and applicability of sensors to map distinct circuits [165]. Future studies
monitoring neural activity in vivo will continue to benefit from efforts to improve genetically-encoded
fluorescent sensors.
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